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Abstract—Lung cancer is a disease that affects and causes
abnormalities in the lungs. The current methods to find and
treat lung cancer require precise and timely detection to im-
prove patient outcomes and survival rates. However, traditional
approaches to lung cancer detection face challenges due to the
extensive patient information spread across different medical in-
stitutions and research centers. Concerns about data privacy and
the need to keep data controlled have prevented the consolidation
of this valuable data into a central repository for analysis. As
a result, the development of effective and accurate detection
models has been limited by restricted access to diverse and
comprehensive datasets. To overcome these challenges, federated
learning (FL) has emerged as a promising approach in the
healthcare field. It has great potential in the healthcare or
medical sector where we can get a better Machine learning model
while ensuring patient data privacy. This paper presents an FL
approach for detecting lung cancer in medical images after setting
an initial weight using Transfer Learning. Using this approach,
we achieved a break a hand accuracy of 91.03% in detecting lung
cancer. This demonstrates the potential of FL for accurate and
privacy-preserving medical diagnosis.

Index Terms—Machine Learning, Federated Learning, Medical
Data, Data Privacy, Cancer Detection, Lung Cancer, Trans-
fer Learning, VGG16, MobileNetV2, Xception, EfficientNetB4,
ResNet15, ImageNet

I. Introduction
Federated Learning (FL) emerges as an advanced distributed

machine learning technique that facilitates multiple partici-
pants in training autonomous machine learning models on
their own datasets while sustaining the confidentiality of their
data [1]. So, instead of moving raw data around, the parties
collaborate by sharing model updates (parameters), which are
then amalgamated with all other encrypted models’ weights
to make a global generalizable model over time. This enables
organizations to harness the power of machine learning while
assuring their data security.
FL holds the potential to transform the healthcare industry

through its integration of numerous diverse medical applica-
tions by ensuring privacy-preserving analysis of crucial and
sensitive medical data [2]. For instance, Federated Averaging
(FedAvg), a well-known FL algorithm, can be employed to
develop models on distributed clinical information, featuring
electronic health records, without undergoing data exchange or
centralization [3]. The FL approach can train a deep learning

model on an extensive data set of clinical images, such as
mammograms or biopsy slides [4]. This approach can improve
the model’s performance by leveraging the combined data
from multiple remote collaborators, while still maintaining the
isolation of individual patients’ information. Fig. 1 visually
represents the basic operational framework.

Fig. 1: Workflow of Federated Learning.

An updated algorithm of FedAvg is presented by Li et al. in
[5] where they discussed the use of federated optimization in
heterogeneous networks. The authors proposed a method that
employs FL to construct a global model while considering
the heterogeneity attributes of the participating clients. The
process focused on a technique called meta-learning to adapt
the model updates from each client to the global model, and
it allows clients to choose their local best model based on
their validation metric. They evaluate the performance of their
approach on a real-world data set and demonstrate that it
outperformed alternate methods in terms of both convergence
speed and prediction accuracy. FL can also address the issue
of limited data availability in the medical sector, which can
be a significant hurdle for the development of accurate cancer
detection models. By aggregating different model updates from
multiple parties, FL can improve the performance of machine
learning models even with limited data at each side [6].
In this paper, we aim to detect one of the deadliest and most
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common cancers in this generation by ensuring more robust
and accurate diagnosis and treatment with the help of diverse
FL methods. The major contributions of this paper are shown
below:
• Implementing the FL method involving different clients
to train and detect three prominent lung cancer types.

• Performing a rigorous assessment of five different dy-
namic models used on our diverse dataset.

• Estimating outperformed model which can identify the
three types of lung cancer to ensure accurate diagnosis in
medical sector .

II. Related Works
In recent years, the healthcare sector has witnessed remark-

able advancements in medical diagnosis and image analysis
with the integration of cutting-edge technologies like Fed-
erated Learning. Xu et al. [7] mentioned some statistical
and system challenges and solutions of the FL method on
systemic and random biased electronic health records (EHRs)
and some implications and potentials in healthcare. A similar
approach has been followed by Zhao et al. [8]. In this study,
unreliable participants, who have low-quality data, have been
identified and reduced their impact on feature capturing and
model training. Le et al. in [9] have introduced a privacy-
preserving system within a federated environment that enables
to identification of similar patients across different institutions.
Homomorphic encryption has been applied to patient searches
and all this happened with breaching patient privacy.

Yaqoob et al. [10] implemented a hybrid classifier-driven
FL framework that consists of an MABC-SVM classifier at the
client end of health service providers. The MABC works for
feature selection, inspired by the intelligent foraging behavior
of honeybee colonies, to find relevant patterns iteratively
across the different client’s data and the addition of SVM
helps to classify heart diseases. Dipro et al. [11] focused on
decentralized servers to integrate the FL framework for Parkin-
son’s disease detection. Three distinct CNN models have been
considered to test and evaluate the performance and among
them, the VGG19 model outperformed with 97.3% accuracy.
Roth et al. [12] have explored the practical application of FL
involving seven clinical institutions across the world. Despite
the presence of significant changes in the dataset and without
centralizing the information, effectively trained CNN models
within the Federated framework. This approach has earned on
average 6.3% better results than other equivalents trained on
an institute’s local data solely.

Holistic exploration in focusing medical domains like
cancer prediction and breast cancer classification has ap-
peared through the implementation of FL methods [13], [14].
Jiménez-Sánchez et al. [13] has implemented a method for
training a global model using FL while protecting the pri-
vacy of individual participants’ data. The method uses a
deferentially private stochastic gradient descent algorithm and
allows clients to select their local best model based on their
validation metric. Beguier et al. [14] experimented with a
different method that employs a memory-aware curriculum

to update a global model. The method enables clients to
learn from their data and, it uses a memory buffer to store
samples from the global model that enhances learning. Brisimi
et al. [15] propose an FL approach for predictive modeling
from electronic health records (EHRs). The experiment shows
that this approach can improve the performance of machine
learning models for predictive modeling from EHRs while
preserving the privacy of individual patients. Additionally,
it can reduce the communication and computational costs
associated with FL. Ishraq R. Rahman et al. in [16] employs
gene expression studies and the CuMiDa dataset to enhance
cancer categorization by identifying the most suitable classifier
model, focusing on lung and bladder cancer datasets while
optimizing accuracy through parameter adjustments.

III. Methodology
A. Data Collection and Pre-processing
The dataset used in this study collected from Borkowski

et al. [17], consists of 25,000 microscopy images of lung
and colon tissue samples that have been labeled as either
cancerous or benign. These images were accumulated from
multiple institutions ensuring patient privacy and informed
consent. The variation in size and resolution make it a well-
curated and challenging dataset for the advancement of cancer
detection algorithms.

(a) Lung SCC (b) Benign Lung (c) Adenocarcinoma

Fig. 2: Sample of Lung Cancer Classes.

From this dataset, we have chosen only lung images and
worked on around 3600 images due to resource constraints.
The entire dataset is divided into three classes including Lung
SCC, Lung Adenocarcinoma, and Benign Lung Tumor (Fig. 2).
We manually create 4 clients where each client contains three
different lung classes and, around 300 images in each class,
and each client has 900 lung data. The images are available in
JPEG format and all the images were 780x780 pixels. Image
Data Augmentation was applied to pre-process the images
and resize them to 128x128x3 formation, The following three
channels indicate the RGB image usage for training the CNN
models.

B. Proposed Framework
The proposed work employs customized and finely tuned

convolutional neural network (CNN) models to extract and
comprehend features from lung cancer images effectively.
Transfer learning is approached to train on clients (edge
devices) model. In this process, the last three layers of each
model have been modified to adapt our target domain. The
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integrated FL layers consist of one flattened layer and two
dense layers. The initial dense layer employs ReLU as an
activation function and in the final layer, the softmax activation
function is applied to facilitate the detection of our multiclass
lung cancers. Fig. 4 shows the mentioned structure. The
proposed work trains the lung dataset on five distinct deep
CNN models.

During the implementation of FL, the fundamental approach
has been followed that commences with the distribution of
initial model weights by the coordinators to individual clients
to inaugurate the model training operation. The initial weights
were derived from its own modified CNN model weight. We
have addressed the initial weight as global weight and the
model’s weight as local weight. Throughout each communi-
cation round, the recently generated model parameter of each
client has been gathered and transmitted back to the coordina-
tor to aggregate those different weights and formulate a new
updated global weight by averaging those model parameters.
This refined global weight is once again disseminated to each
client to enhance the model’s robustness and experience to
effectively capture the relevant features and complex patterns
of lung cancer.

Fig. 3: Applied Federated Learning Flow

In our study, we meticulously executed around a hundred
communication rounds, and based on the dataset each client
model has undergone approximately thirty epochs each time.
Each model of individual clients has been tracked during the
end of each communication round along with their perfor-
mance accuracy, validation loss, and other matrices. Fig. 3
shows the visual representation of our applied FL flow and al-
gorithm 1 provides an idea of our proposed framework. There,
w1,w2,w3, and w4 represent the individual local weights of
local models and AW stands for the assigned weight from the
coordinator to each client. The operation has been split into
two segments for weight scaling and aggregating to reduce the
computation time.

Let c as the of clients’ uses and the sample available from
that client is nc .So, n =

∑C
c=1 nc is the total sample size. For

scaling the weight in each iteration of the c client,

W = [w1,w2, . . . ,wn]

W, the list of the original weights of each client k.The scaled
final weight list,

Wfinal = [wfinal,1,wfinal,2, . . . ,wfinal,n]

Now to scale each client’s latest weight,

wfinal,i =
nc
n
× w[i] (1)

Here, i ranges from 1 to no of weight available for c client.
After that, we summed all the weights of different clients,

Wglobal =

C∑
c=1

Wfinal (2)

Algorithm 1 Pseudocode for Proposed Framework
Input: total communication rounds, number of clients, global

model weights
Output: updated global model weights, performance metrics

1: Set initial weights using Transfer Learning
Communication Rounds :

2: for each communication in total communications do
3: Get the current global model weights
4: Initialize list to store scaled local weights

Client Updates :
5: for each client in the total number of clients do
6: Set the local model’s parameters to global weights
7: Calculate steps per epoch for training and validation

8: Train local model for one epoch using client’s data
9: Scale the local model’s weights and store them
10: end for
11: Compute the average of scaled local weights to update

the global model
12: Assess the global model’s accuracy on test data
13: end for

C. Fine Tuning Parameters
The proposed training configuration uses a batch size of 24,

which indicates the number of data samples processed in each
training iteration. With 720 training images for each client, the
entire dataset is iterated through in batches, and this process
repeats 30 times per client in each communication. Here
communication round means after training the model locally
we send the updated weight to the client server and aggregate
them. Validation, performed over 180 images per client with
7 steps after each epoch, assesses model performance while
updating weights. The learning rate, set at 0.00001, controls
the size of weight adjustments during optimization. Over 100
communication rounds, the FL process involves interactions
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between the central server and clients, with optimization driven
by Stochastic Gradient Descent (SGD) as the chosen optimizer.
After that send the updated weight to the local client again.
These parameters shape the training model, influencing the
duration, intensity, and optimization strategy of the machine
learning model. The parameters Setup is shown in table I.

TABLE I: Parameters Setup for Proposed Model

Parameters Value
Batch Size 24

Training Data for Each Client 720
Steps per Epoch 30
Validation Steps 7
Learning Rate 0.00001

Communication Round 100
Optimizer Stochastic Gradient Descent

D. Model Specification
Due to the diverse attributes, and complex patterns present

in the lung dataset, Transfer Learning has been employed
in our study. The following model including VGG16, Mo-
bileNetV2, Xception, EfficientNetB4, and ResNet15 have been
used which is trained on the ImageNet dataset. ImageNet
[18] is a large dataset that contains over 14 million images
organized into over 20,000 categories, and is often used to train
and evaluate machine learning models for image classification,
object detection, and other vision tasks. Deep learning models
have played a crucial part in the progress and enhancement of
several fields. Moreover, they have been widely employed as a
standard for evaluating and comparing the efficacy of different
models.

1) Transfer Learning: Transfer learning is a technique that
exploits the knowledge earned from previous tasks to flourish
the generalization of others [19]. It is an optimization that
enables rapid progress or improved performance and is related
to involving in multi-task learning. In transfer learning, like
other neural networks, early layers try to detect edges and
middle layers are for shape-capturing, and mainly latter layers
are customized and retrained with the target domain to leverage
the labeled data of the task it was initially trained on. Fig. 4
gives us an idea of how transfer learning works along with the
information of the used model in this research work.

2) VGG16: VGG16 is a convolutional neural network
(CNN) model that mostly participated in object detection
and classification due to its uniform architecture and easy-to-
achieve transfer learning behavior [19]. The model is trained
on the ImageNet dataset to update the humongous parameters
for better performance. The VGG16 architecture consists of a
total of 21 layers, which include 3 dense layers, 13 convolu-
tional layers, and 5 max-pooling layers. The model has often
been used as a benchmark for evaluating the performance of
other image classification models.

3) MobileNetV2: MobileNetV2 is an efficient and
lightweight CNN model and the main components of this
architecture are inverted residual blocks and linear bottlenecks
[20]. These blocks comprise pointwise convolution(1x1

Fig. 4: Modifying CNN Architecture for Applications

filter), depthwise separable convolution(3x3 filter), and
another pointwise convolution layer sequentially. The unique
formation facilitates to reduction of computational costs
while maintaining accuracy and introduces two distinct
hyperparameters cited as width multiplier and resolution
multiplier to reduce noise and adjust channels.
4) Xception: Xception is an advanced version of the incep-

tionv3 model with modified depthwise separable convolution
[21]. The main objective of Xception is to enhance the
efficiency and efficacy of the Inception model by reversing
its workflow. To achieve this, the architecture breaks down
standard convolutions into two distinct operations: depthwise
convolutions and pointwise convolutions.
5) EfficientNetB4: EfficientNetB4 belongs to the Efficient-

Net series and aims to enhance accuracy by increasing the size
of the model while preserving efficiency [22]. The architecture
is based on a scaling method that adjusts the depth, width,
and resolution of the network consistently. The depth scaling
involves including more layers in the network architecture,
which improves the model’s ability to represent information.
6) ResNet152: ResNet152 stands out due to its unique ap-

proach of using residual blocks that incorporate shortcut con-
nections, also known as skip connections, to bypass particular
layers [23]. These bypass connections help the network to learn
residual functions rather than directly learning the desired
mapping. As a result, deep ResNet models like ResNet152
can keep the gradients from disappearing during training by
passing on the residual error.

IV. Results and Discussion
Table II encapsulates the performance evaluation of several

deep learning models across a specific task. Each model’s
accuracy, F1 score, precision, recall, AUC, and loss are
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TABLE II: Performance Matrices

Models Accuracy (%) F1 Score (%) Precision (%) Recall (%) AUC (%) Loss
VGG16 91.03 90.88 91.23 89.44 98.55 0.315

MobileNetV2 82.77 82.84 83.25 81.77 94.71 0.469
Xception 81.33 87.79 81.52 80.88 94.86 0.419

EfficientNetB4 77.99 77.82 78.03 77.77 91.71 0.674
ResNet152 78.88 81.08 80.44 76.33 93.50 0.478

systematically detailed, shedding light on their respective ca-
pabilities. VGG16 emerges as the leader in accuracy, boasting
an impressive 91.00%, showcasing its adeptness at making
correct predictions. Close behind, MobileNetV2 demonstrates
a commendable 82.77% accuracy, while Xception and other
models follow suit with their distinct performances. Looking
beyond accuracy, the F1 score serves as a key metric for
the balance between precision and recall. VGG16 and Mo-
bileNetV2 shine with high F1 scores of 90.88% and 82.84%,
respectively, indicating a balance between these two critical
factors. The models’ performance varies in terms of precision
and recall, with Xception placing more emphasis on precision
which is 81.52%, and EfficientNetB4 showing a balanced
trade-off. Moreover, the AUC metric highlights the discrim-
inative power of the models. VGG16 and Xception excel
with AUC values of 98.55% and 94.86%, underlining their
exceptional ability to distinguish between classes. Considering
the loss metric, VGG16 emerges as the frontrunner with the
lowest value of 0.315, indicating efficient convergence during
training. Conversely, EfficientNetB4 records the highest loss
(0.674), suggesting potential room for optimization. Overall,
the presented results reveal the strengths and trade-offs of each
model, enabling a comprehensive assessment for selecting
the most suitable model based on the requirements of the
application.

Fig. 5: Global Model Accuracy Comparison Graph.

Fig. 5 represents accuracy evolution across the commu-
nication rounds of diverse CNN models. Initially, the ma-
jority of models exhibit substantial improvement over the
communication round except for efficientnetB4 and Resnet152,
which lag up to a particular round. Approximately after forty
rounds, CNN models demonstrated a tendency to reach satura-

Fig. 6: Global Model Loss Comparison Graph.

Fig. 7: Global Model AUC Comparison Graph.

Fig. 8: Confusion Matrix of VGG16

tion point and displayed moderate growth thereafter. Remark-
ably, VGG16 maintains consistent improvement throughout
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Fig. 9: Confusion Matrix of MobileNetV2, Xception, Efficient-
NetB4, ResNet152

the communication process. Fig. 6 depicts that, all models
show substantial loss reduction with effective convergence
over communication periods, except EfficientB4. Fig 7, VGG-
16, MobilenetV2, and Xception consistently display effective
convergence with significant AUC improvement.EfficientnetB4
and Resnet152 initially step behind but catch up to other
models to effectively distinguish lung instances. Fig. 8 and
9 show the confusion matrix of the achieved model.

V. Conclusion
In this paper, we have tried to effectively detect different

lung cancers by leveraging decentralized data sources while
preserving individual data ownership and privacy. Five distinct
CNN models with the help of transfer learning have been con-
ducted to achieve superior performance. The results presented
in this research paper align with our ideology and demonstrate
precise accuracy in lung cancer detection. Nevertheless, it is
essential to recognize the fundamental challenges of FL exe-
cution, such as communication overhead, model aggregation
complication, and potential bias by distinct data dispersion.
FL demonstrates a promising scope in the dynamic sector of
healthcare in the future. The instinctive nature of distributed
and privacy concerns enables multidimensional clinical data
integration and in-depth image analysis. Moreover, for chronic
diseases, it could be applied as continuous monitoring of
the different patients and appear as a personalized treatment
planner.

References
[1] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and

B. Agüera y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” arXiv e-prints, pp. arXiv–1602, 2016.

[2] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.

[3] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149, p.
106854, 2020.

[4] M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, and H. R. Tizhoosh,
“Federated learning and differential privacy for medical image analysis,”
Scientific Reports, Nature Machine Intelligence, vol. 12, no. 1, p. 1953,
2022.

[5] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.
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